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Analytical analyses of stress transfer in 
fibre-reinforced composites with bonded and 
debonded fibr8 ends 

C H U N - H W A Y  HSUEH 
Metals and Ceramics Division, Oak Ridge National Laboratory Oak Ridge, 
Tennessee 37831, USA 

The elastic stress transfer from the matrix to the fibre is analysed analytically for fibre-reinforced 
composites when the loading direction is parallel to the fibre axis. The fibres with bonded 
lateral interfaces and (1) debonded and (2) bonded ends are considered in the present study. 
For the case of debonded ends, the present solutions contain refinements of the previously 
derived analytical solutions. For the case of bonded ends, unlike the numerical solutions 
derived previously, the present analytical solutions are ready to be used for further analyses. 
The results show that the stress transfer is more effective when the fibre has higher Young's 
modulus or longer length. Also, compared to the debonded ends case, the stress transfer is 
more effective and the stress distribution is more uniform when the ends are bonded to the 
matrix. 

1. Introduction 
Fibre-reinforced composites have been used extensively 
and are contemplated for future applications as they 
offer a means of achieving superior mechanical prop- 
erties [1-3]. These composites often contain discon- 
tinuous strong fibres where at least a portion of the 
fibres have their longitudinal axes parallel to the load- 
ing direction to achieve a substantial reinforcement. 
Tensile stresses applied on the composites can be 
transferred from the matrix to fibres by shear at 
the fibre-matrix interface [4-8] and, when the fibre 
ends are bonded to the matrix, through the ends 
of the fibre. This stress transfer plays an important 
role in controlling the mechanical properties of the 
composites. 

Experimental techniques and theoretical analyses 
have previously been developed to study the stress 
transfer phenomenon. Experimentally, a photoelastic 
technique was used to evaluate the two-dimensional 
stress in a sheet of resin containing a rectangular 
Dural bar [9, I0]. Existence of high shear stress near 
the ends of the bar was confirmed [9, 10]. Theoreti- 
cally, a single fibre with finite length embedded in a 
coaxial cylindrical matrix was adopted as a model 
system for stress analyses [11-14]. Analytical solutions 
of the stress transfer have been derived; however, the 
solutions were limited to the case where the ends of the 
fibre are debonded from the matrix [4, 5, 11]. Analyses 
considering bonded fibre ends have been performed 
numerically by using polynomial approximations [12], 
finite element analyses [13] or finite difference analyses 
[14]. 

The purposes of the present study are to refine the 
analytical analyses for the case of debonded fibre ends 
[4, 11], and to develop analytical solutions for the case 
of bonded ones. These are achieved by using the same 
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model system of a single-fibre reinforced composite as 
that used by previous researchers [11-14], and by 
adopting an analytical technique similar to the one 
used for the fibre pullout problem [15]. The differences 
between the solutions for bonded and debonded fibre 
ends are revealed, the parameters controlling the 
stress transfer are studied, and the critical fibre length 
for effective stress transfer is discussed. Also, the 
present results are compared with some of the pre- 
vious results [11, 14]. 

2. Analytical analyses 
The geometry of a shear-lag model used in previous 
studies [11-14] is adopted in the present study. A fibre 
with radius, a, and length 2l, is embedded in a coaxial 
cylindrical matrix with an outer radius, b, and an 
infinite length. As shown in Fig. 1, r is the distance 
from the fibre axis, and z is the direction parallel to the 
fibre axis. An axial tensile stress, a0, which is parallel 
to the fibre axis, is remotely applied to the matrix. 
It is assumed that both the fibre and the matrix are 
isotropically elastic and that the bonded fibre-matrix 
interface (at r = a) transfers stresses from the matrix 
to the fibre by interfacial shear, Ta, without any sliding 
between the two components. 

The derivations of the analytical solutions for the 
stress transfer problem in Fig. 1 are similar to those 
recently derived for the fibre pullout problem [15]. The 
calculational procedures are listed in the Appendix 
and the general solution for the axial stress distri- 
bution in the fibre, o-f, is (see Equation A13) 

b2Erao 
af = a2Er + (b 2 _ a2)E m 

+ A exp (ez) + B exp (-c~z) (1) 
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Figure 1 A schematic drawing showing the idealized shear-lag 
model used in the present study to analyse the stress transfer prob- 
lem for fibre-reinforced composites. 

where ~ is defined by Equation A14, E is Young's 
modulus, and the subscripts f and m denote the fibre 
and the matrix, respectively. The stress distribution in 
the fibre (Equation 1) is contingent upon the deter- 
mination of the coefficients, A and B. Depending upon 
the boundary condition at the ends of the fibre, the 
solutions of A and B and hence the stress transfer in 
the system (Fig. 1) can be determined. The solutions 
for debonded and bonded fibre ends are considered in 
the following analyses. 

2.1. Debonded fibre ends 
When the ends of the fibre are debonded from the 
matrix during tensile loading, stresses cannot be trans- 
ferred through the ends, i.e. 

or = 0 (2) 

at z = _+ 1. Solution of Equation 1, subject to the 
boundary condition in Equation 2, is 

- b2Era0 
A = B = 

a2Er + (b 2 - a2)Em 

x [exp(.l) + exp( -cd) ]  -~. (3) 

The solutions for the stress transfer (Equations 1 and 
A15) are hence complete. 

By assuming that the stress gradient in the fibre is 
proportional to the difference between the axial dis- 
placement of  the fibre and that of  the matrix at the 
same point if the fibre were absent, the analytical 
solution of o-r for the case of  debonded fibre ends has 
been derived previously by Cox [11], such that 

[ cos. ,z, 1 
Or = eEr 1 cosh (ill) (4) 
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where e is the applied axial strain in the matrix and/~ 
is given by 

1 [ E m 71/2 

fl = a Er(1 + Vm) in (b/a)]  (5) 

Comparison of Equations A14 and 5 shows that, 
when b 2/a 2 ~ 1, the coefficient, ~, in Equation 1 can 
be simplified and equals /3 in Equation 4. Further- 
more, if the strain in the matrix, e, in Equation 4 is 
considered as the uniform axial strain in the com- 
posite, e0, when the fibre is infinitely long, then 

6 2 tr 0 

e = go = a2Ef _]_ (b 2 _ a2)Em (6) 

The present solution (Equation 1) becomes identical 
to the previous one (Equation 4) derived by Cox [11] 
for the case of  debonded fibre ends. 

2.2. Bonded fibre ends 
When the ends are bonded to the matrix, stress can 
also be transferred from t h e  matrix to the fibre 
through continuity at the ends. The boundary condit- 
ion (Equation 2) is trivial when the ends are debonded. 
However, the boundary condition is currently ambigu- 
ous when the ends are debonded. In the solutions 
obtained by polynomial approximations [12], a con- 
stant axial stress or displacement is assumed in the 
matrix at the cross-section corresponding to the fibre 
ends. In the solutions obtained by finite element analy- 
ses [13], a uniform axial displacement is adopted at 
one end of  the matrix. In the case of finite difference 
analyses [14], the lattice in the composite is strained by 
a constant amount; then, the technique of overrelax- 
ation or block relaxation is used to calculate the dis- 
placement in the equilibrium condition. 

Instead of  defining the exact boundary condition 
for bonded ends, the present study seeks an alternative 
boundary condition in an approximate manner, such 
that analytical solutions can be obtained. It is noted 
that within the range, - I  ~< z ~< l and r ~< b, the 
least perturbed positions (due to the presence of the 
fibre) are located at z = _+ l, r = b. Hence, stresses at 
these positions are assumed to be unperturbed and 
equal to the applied stress, such that 

O-b = ~ro (7) 

at z = _+ l, where o- b is the axial stress in the matrix at 
the outer surface (r = b). This assumption (Equation 7) 
is deemed to be appropriate when the fibre is sur- 
rounded by a relatively large matrix (e.g. b/a > 5). 
Solution of Equations 1 and A10 subject to this bound- 
ary condition (Equation 7) yield 

a2(Em - El)if~ I b2 - a2 1 
A = B = a2E-Tr 7 ~ j  _- a--~E m 2 in (b/a) b2 

b 2 . a 2 "] Em __ -1 

• [exp (gl) + exp ( -~1) ]  i (8) 

Furthermore, when the fibre and the matrix have 
the same Young's modulus, Equation 8 can be reduced 
to A = B = 0, and the axial stress in the fibre 
(Equation 1) becomes uniform and equals the applied 
stress (i.e. (Tf -~- a 0 when Er = Era).  
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Figure 2 Norma l i zed  axia l  stress in the ma t r i x  as a funct ion 

of  no rmal i zed  rad ia l  pos i t ion ,  r/a, at  cross-sect ions  located 

at  z/a = 0, 8 and  10 for Ef/E m = 5, v m = 0.35, b/a = 10 

and  l/a = 10: ( ) bonded  fibre ends, ( - - - )  debon-  

ded fibre ends. 

3. Results 
Unless noted otherwise, the present results are com- 
puted using Er/Em = 5, Poisson's ratio of  the matrix, 
Vm = 0.35, b/a = 10 and l/a = 10 for bonded and 
debonded fibre ends to elucidate the essential trends of 
the stress transfer pheonomenon. Firstly, the pertur- 
bation of the stress distribution in the matrix due to 
the presence of  the fibre is revealed. Then, the effects 
of the elastic constants of the fibre and the matrix, the 
dimension of  the matrix, and the length of  the fibre on 
the stress transfer are studied. Finally, the critical fibre 
length for effective stress transfer is discussed. 

Because the axial and interfacial shear stresses are, 
respectively, an even and an odd function of  z (see 
Equations 1 and A15), the plots of the stress distri- 
bution along the fibre length are shown in this paper 
for z >/ 0. Also, the present results are compared with 
the existing results [11, 14]. 

3.1. Perturbation of stress distributions in the 
matrix 

The axial stress distribution in the matrix at cross- 
sections of  the shear-lag model (i.e. along the radial 
direction) are plotted for axial positions z/a = O, 8 
and 10 in Fig. 2. The stress distribution in the matrix 
is non-uniform due to the presence of  the fibre. At the 
axial position corresponding to the fibre ends (i.e. at 
z = l = 10a), the stress is the most non-uniform. The 
stress becomes more uniform as the distance from the 
ends of  the fibre increases (i.e. as z decreases in Fig. 2). 
Compared with the debonded fibre ends case, the 
stress in the matrix is more uniform when the fibre 
ends are bonded to the matrix (Fig. 2). 

3.2. Effects of elastic constants on stress 
transfer 

The normalized axial stress in the fibre and the nor- 
malized interfacial shear stress as a function of the 
axial position are shown in Fig. 3 for Er/Em = 2 and 
5. The stress transfer from the matrix to the fibre 
increases with the increase in the ratio of Er/E m. Also, 
compared with the debonded ends case, the stress 
transfer is more effective when the ends are bonded as 
shown by higher axial stresses in the fibre for the 
bonded case in Fig. 3a. Unlike the case of debonded 
ends, the axial stress in the fibre has a finite value, 
indicating stress transfer occurs at the fibre ends when 
they are bonded (Fig. 3a). With the interfacial shear 
stress being proportional to the axial stress gradient in 
the fibre (see Equation Al l ) ,  the interfacial shear 
stress becomes higher when Ef/E m is increased or the 
fibre ends are debonded (Fig. 3b). The higher inter- 
facial shear stress in the debonded ends case than the 
bonded ends case has also been concluded from the 
experimental measurement [9] and the finite element 
analyses [13]. The interfacial shear stress has a maxi- 
mum value, ~a, at the fibre ends and decreases to zero 
in the middle of the length of the fibre (Fig. 3b). 

Comparison between the present model and the 
existing model [11] for the case of  debonded ends is 
shown in Fig. 4, where the normalized maximum 
interfacial shear stress, ~a/o-0, is plotted as a func- 
tion of  the normalized radius of the matrix, b/a, for 
El~Era = 5 and 10. The maximum interfacial shear 
stress predicted from the present model is higher than 
the existing model [11]. However, the difference 
decreases when b/a increases or EfiE~ decreases 
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F~ure 3 (a) Normalized axial stress in the fibre, and (b) 

normalized interfacial shear stress as a function of  
normalized axial position for Er/E m = 2 and 5: ( -  ) 
bonded ends, ( - - - )  debonded ends. 

(Fig. 4). For the case of bonded ends, the axial strain 
in the fibre, er(= dwr/dz), normalized by the uniform 
axial strain in the composite, t0 (Equation 6), is plotted 
in Fig. 5a for b/a = 11 and l/a = 25 at different ratios 
of Er/E m. The axial strain in the fibre is less than that 
in the composite (i.e. er/e0 ~ 1) and decreases with 
increasing Ef/Em. This trend is consistent with the 
finite difference results [14]. However, the axial strains 
at the ends of the fibre predicted from the present 

model are higher than the finite difference results [14]. 
The interfacial shear stress distribution along the fibre 
length is plotted in Fig. 5b (with b/a = 11, l/a = 25 
and Er/Em = 20) for the cases of bonded and debonded 
ends from the present analyses, ofdebonded ends based 
on Cox's analytical solutions [11], and of bonded ends 
derived from the finite difference results [14]. The 
difference between the present and the existing results 
[11] is small for the case of debonded ends; however, 
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the interfacial shear stresses at the ends predicted from 
the present model are much smaller than the finite 
difference result [14] for the case of bonded ends 
(Fig. 5b). 

The effect of Poisson's ratio of the matrix, Vm, on the 
stress transfer, at, is shown in Fig. 6 by assuming 
arbitrarily that Vm equals 0 and 0.5. The stress transfer 
becomes less effective as % increases; however, this 
effect is negligible when the fibre ends are bonded to 
the matrix. 

3.3. Effects of the matrix dimension 
The effect of the relative radius of the matrix, b/a, on 
ar is shown in Fig. 7a. When the ends are bonded, the 
stress transfer is more effective and the axial stress 
distribution is more uniform as b/a increases. This 
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Figure 6 Normalized axial stress in the fibre as a function of nor- 
malized axial position for Poisson's ratio of the matrix v m = 0 and 
0.5: ( ) bonded ends, ( - - - )  debonded ends. 

trend is consistent with the finite difference results that 
an increase in the matrix radius leads to higher effic- 
iency of stress transfer [14]. The axial stresses in the 
fibre at the middle and the ends (i.e. ~f(0) and af(l)) 
are shown in Fig. 7b. For bonded ends case, o-f(0) and 
o-r(l ) increase and their difference decreases as b/a 
increases. The increasing uniformity of o- c can be 
observed from the decrease of the difference between 
o-r(0 ) and o-f(l ) as b/a increases. For debonded ends 
case, at(l) equals 0; however, at(0) shows an initial 
increase and then decreases to approach an asymptote 
as b/a increases (Fig. 7b). 

3.4. Effects of the aspect ratio of the fibre on 
stress transfer and the critical fibre 
length for effective stress transfer 

The effect of the aspect ratio of the fibre, l/a, on ~r r is 
shown in Fig. 8. The effectiveness in the stress transfer 
increases with the increase in the l/a ratio. A critical 
fibre length, /~, has been defined, such that at this 
critical fibre length, the maximum fibre strain (i.e. the 
fibre strain at z = 0) equals 97% of that for an 
infinitely long fibre [14]. The normalized critical fibre 
length as a function of the Young's modulus ratio, 
Er/Em, is shown in Fig. 9, such that l~/a increases with 
the increase in Er/E m. Compared with the case of 
bonded ends, the critical fibre length is longer in the 
case of the debonded ends. However, the linear rela- 
tion between lc/a and Ef/E m derived from the finite 
differnce analyses [14] is not found in the present 
study. 

4. Discussion 
The present study has derived simple analytical sol- 
utions of the elastic stress transfer from the matrix to 
the fibre for fibre-reinforced composites with bonded 
and debonded fibre ends when the tensile loading 
direction is parallel to the fibre axis. The presence of 
a stress singularity at the sharp corner of the fibre ends 
is avoided in the present study by using the simplified 
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assumptions (e.g. Equation A 1 and the condition that 
the axial displacement in the fibre is independent of 
the radial coordinate). The same assumptions have 
been used in a previous paper to establish the con- 
stitutive equation for the fibre pullout problem [15], 
and the results derived therein [15] are in excellent 
agreement with the rigorous numerical solutions [16]. 
This provides credence to the present analytical results 
obtained for the stress transfer problem. 

Analytical solutions for the stress transfer are 
obtained by solving the constitutive equaiton (i.e. 
Equation A I2) subject to the boundary conditions. 
When the fibre ends are debonded from the matrix, 
the boundary condition (Equation 2) is trivial, and the 
analytical solution can be derived readily. Compared 
with the existing analytical solutions by Cox [11], 
the present solutions yield higher interfacial shear 
stresses at the ends of the fibre; however, the difference 
decreases as Er/Em decreases or b/a increases (Fig. 3). 
The interfacial shear stresses at the ends derived from 
finite element analyses for debonded ends case [13] are 
also higher than those derived from Cox's solutions. 

When the fibre ends are bonded to the matrix 
during loading, the analytical solution in the present 

study is achieved by using a simplified boundary con- 
dition (Equation 7), which is expected to be appro- 
priate when b/a is large (>  5). Compared with the 
finite difference results [14], the same trends of stress 
transfer phenomena (i.e. the dependence on the 
Young's modulus, the fibre length and the matrix 
dimension) are obtained in the present analytical sol- 
utions. However, the interfacial shear stresses at the 
ends predicted here are much less than those obtained 
from the finite difference analyses [14] (see Fig. 5b). 

The stress transfer behaviour has been evaluated 
from the photoelastic technique [9, 10]; however, its 
two-dimensional results make the comparison with 
the three-dimensional theoretical analyses difficult. 
The predicted low interfacial shear stresses at the ends 
(compared with the finite difference results) for bonded 
ends case obtained by the present analytical scheme 
may be due to the simplified boundary condition 
assumed in deriving the solutions. Considering the 
small perturbation of 68(4- l) (i.e. stress in the matrix 
at r = b and z = 4- l) due to the presence of the strong 
f i b r e ,  O b ( 4 - l )  should be slightly lower than the applied 
stress, a0, because the stress transfer at the fibre ends 
is higher than ~0- Substituting the boundary condition 
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in Equation 7 by Ob(~__l) = nor 0 where n < 1, the 
interracial shear stresses are shown in Fig. 10 for n = 
0.95 and 0.98 as examples to denote the small pertur- 
bation. Fig. 10 shows that the interfacial shear stress 
decreases as n decreases. Hence, high values of the 
interfacial shear stresses at the ends from the finite 
difference results cannot be concluded from the 
present analytical analyses for the bonded ends case. 
However, the present analytical solution for the case 
of bonded ends is preliminary; better boundary con- 
ditions and hence more comprehensive analytical 
solutions are hoped to emerge in the future. 

The present results show that compared with the 
debonded ends case, the stress transfer is more effec- 
tive and the axial stress distribution is more uniform 
when the ends are bonded. For  debonded ends, the 
stress cannot be transferred across the end faces and 
this is partially compensated for by increasing the 
portion of  stress transfer by interfacial shear along the 
fibre length [9], which in turn, results in a higher 
interfacial shear stress than the bonded ends case. The 
effect of Poisson's ratio of  the fibre, vr, on the stress 
transfer is not shown in the present study and is 
expected to be negligible; however, when the com- 
posite has a frictional interface at the fibre-matrix 
interface (i.e. at r = a), this effect becomes important 
[7, 8]. 

With the definition of the critical fibre length, a 
linear relation between the critical fibre length and the 
Young's modulus ratio, Er/Em, has been concluded 
from the finite difference analyses [14]. The present 
study yields the non-linear result. Also, when the fibre 
ends are bonded to the matrix, the curve intercepts the 
x-axis at a value higher than 1 (i.e. EdEm > 1 when 
4/a = 0 for bonded ends case in Fig. 8). This can be 
visualized because the axial strain in a discontinuous 
fibre is always equal to that of  an infinite long fibre 
when Ef = Em (i.e. st/e0 = 1 when Ef/Ern = 1). The 
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Figure 10 Normalized interfacial shear stress as a function of nor- 
malized axial position for bonded ends case with the boundary 
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curve where lc/a against Ef/Em is linear and passes 
through the origin, derived from the finite difference 
results [14], deserves further considerations. 

A p p e n d i x :  d e r i v a t i o n  o f  t h e  c o n s t i t u t i v e  
e q u a t i o n  g o v e r n i n g  s t ress  t r a n s f e r  

When the fibre-matrix interface is subject to a shear 
stress, G, the shear stress inside the matrix, Vm, is 
inversely proportional to the distance from the fibre 
axis, such that [4, 5, 17] 

rrn = a'ca/r (AI) 

Also, the shear stress in the matrix can be expressed as 

Em dwm 
rm - (A2) 

2(1 + Vm) dr 

where Wm is the displacement of the matrix element in 
the axial direction and Em and YI are Young's modu- 
lus and Poisson's ratio of the matrix, respectively. 

Combination of  Equations A I and A2, and integra- 
tion give 

(W b -- Wa)E m 
T m = (A3) 

2r(1 + Vm) In (b/a) 

(w~ - Wa)Em 
(A4)  

~a = 2a(1 + Vm) In (b/a) 

where w~ and wb are the axial displacement at the inner 
(r = a) and at the outer surfaces (r = b) of  the 
matrix, respectively. The axial stresses in the fibre, or, 
and in the matrix, am, can be related to axial displace- 
ments by 

ar = Er dwf (A5) 

dwm (A6) 
a m = Em dz 

where Ef and wf are Young's modulus and the axial 
displacement of the fibre, respectively. Furthermore, 
for a thin fibre, the axial displacement in the fibre can 
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be assumed to be independent of the radial position, 
and identical to the axial displacement of the matrix at 
r = a (i.e. w r = w~) to satisfy the continuity con- 
dition at the bonded fibre-matrix interface. 

The axial displacment in the matrix, Win, can be 
derived from Equations A2 and A4, such that 

W m = W a ~- (W b - -  Wa) In (r/a)/ln (b/a). (A7) 

Substitution of Wm into equation A6 gives 

( Em ) ln(r /a)  (A8) 
- -  Em a r -k ab - in ( b / a )  (7 m -- E7 ETf {Tf 

where a~ (=  Emdwe/dz ) is the axial stress of the matrix 
at the outer surface (r = b). Also, mechanical equi- 
librium of the external load and the internal stress 
distributions requires 

a2o-f q- 2 f2 ra m dr = b2ao (A9) 

Solution of Equations A8 and A9 gives 

2In(b /a )  ~ -  ar 

b2 - a2 1 
]-n (bT) J (AIO) 

Because the stress transferred from the matrix to the 
fibre through the interracial shear stress (%), equilib- 
rium between z a and the axial stress in the fibre, o- r, 
requires [4, 5, 17] 

do- r - 2% 
- (Al l )  

dz a 

Combination of Equations A3, A5, A6, A10 and A 11, 
and differentiation of the equations with respect to z 
give 

d2~f  

d z  2 

a2Ef + (b 2 _ a2)Em 
a2Ef(1 + Vm)[b 2 In (b/a) - (b 2 - a2)/2] 

I b2Efao 
• ar - a2Ef + (b 2 _ a2)E m (A12) 

The general solution of Equation A12 is 

b2 Efoo  

a r ~- a2Er q- (b 2 - a2)Em 

+ A exp(ez) + B exp( -ez )  (A13) 

where ~ is given by 

1 I a2Ef_.k (b2 a2)Em f / 2  

a Er(l + v-~2Tn ~/S)  - ~ - ~ -  a2)/2] 

(A14) 

and the coefficients, A and B, can be determined from 
the boundary conditions at the ends of the fibre. Also, 
the interfacial shear stress derived from Equations 
A l l  and A13 is 

a 
~ - 2 c~[A exp (ez) - B exp ( -ez ) ]  (A15) 
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